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Compilers are Everywhere!

• Language Implementation

C/C++ to a.out

Java/Python to bytecode

VHDL/Verilog to netlist

Statecharts to C++

Target behavior should be a subset of source behavior.

• Refactoring Programs

Source and target behavior should be identical.

• Layering Program Aspects

Target should match source behavior on all but the new aspect.

Public
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What is the Problem? 

Compilers are too large and far too complex for ex post facto verification.
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This is not a new problem!

(The Humble Programmer, Edsger W. Dijkstra, 1972)
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This talk: A Less-Than-Ideal Solution 

Design software to be self-certifying. 

With the property: If 𝒗𝒂𝒍𝒊𝒅(𝑰𝒏,𝑾,𝑶𝒖𝒕) then Box is operating correctly. 

Box
𝐼𝑛 𝑂𝑢𝑡

validator

Proof 𝑾 Proof/Witness/Certificate
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Does self-certification work for compiling?

Common optimizations have simple certificates

• Dead Store Elimination

• Constant Propagation and Folding

• Loop Unrolling (replicate loop body)

• Loop Peeling (expand first K iterations)

• Loop Invariant Code Motion

• Static Single Assignment (SSA) conversion

• CFG simplification

• Instruction Combination

The trusted code base shrinks from a few million to 
a few thousand lines of code.

Public

opt

certificate gen

certificate 
check

𝑆 𝑇

Certificate 
W

Credible Compilation [Rinard-Marinov, 1999]

Witnessing [Namjoshi-Zuck, 2013]
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What is a Certificate? 

x := x+y;

y := y+1;

x := y*2;

print(x,y)

There is a simple pattern to the certificate: 

-- relate states with the same program location, and 

-- include term 𝑣 = 𝑣′ if and only if variable 𝑣 is live at that location in the source program 

Public

𝑦 = 𝑦′

𝑥 = 𝑥′ 𝑎𝑛𝑑 𝑦 = 𝑦′

𝑦 = 𝑦′

𝑥 = 𝑥′ 𝑎𝑛𝑑 𝑦 = 𝑦′

𝑥 = 𝑥′ 𝑎𝑛𝑑 𝑦 = 𝑦′

skip;

y := y+1;

x := y*2;

print(x,y)

Program S Program T

Dead Store
Elimination
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What is a Certificate? 

x := 3;

y := x+1;

x := y*z;

print(x)

This certificate also follows a simple pattern: 

-- relate states that have the same location, and 

-- include term 𝑣 = 𝑣′ for all variables 𝑣, 
and term 𝑣 = c if 𝑣 has a known constant value c at that location in the source

Public

𝑥, 𝑦, 𝑧 = 𝑥′, 𝑦′, 𝑧′ 𝑎𝑛𝑑 𝑥 = 3 𝑎𝑛𝑑 𝑦 = 4

𝑥, 𝑦, 𝑧 = 𝑥′, 𝑦′, 𝑧′

𝑥, 𝑦, 𝑧 = 𝑥′, 𝑦′, 𝑧′ 𝑎𝑛𝑑 𝑥 = 3

𝑥, 𝑦, 𝑧 = 𝑥′, 𝑦′, 𝑧′ 𝑎𝑛𝑑 𝑦 = 4

𝑥, 𝑦, 𝑧 = 𝑥′, 𝑦′, 𝑧′ 𝑎𝑛𝑑 𝑦 = 4

x := 3;

y := 4;

x := 4*z;

print(x)

Program S Program T

Constant
Propagation
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Validating Certificates 

Public

Soundness: Every computation of T has a W-related computation in S with identical i/o behavior.

Completeness: Every correct transformation has a valid certificate.

The certificate may include history (summarize past actions), allow stuttering (ignore inessential actions), and 
provide prophecy (guess future nondeterminism) 

𝑠

𝑠′

𝑡

𝑡′

W

W

Program S Program T
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Generating Certificates 

x := x+y;

y := y+1;

x := y*2;

print(x)

There is a simple pattern to the certificate: 

-- link states with the same program location, and 

-- include term 𝑣 = 𝑣′ if and only if variable 𝑣 is live at that location in the source program 

Public

𝑦 = 𝑦′

𝑥 = 𝑥′ 𝑎𝑛𝑑 𝑦 = 𝑦′

𝑦 = 𝑦′

𝑥 = 𝑥′ 𝑎𝑛𝑑 𝑦 = 𝑦′

𝑥 = 𝑥′ 𝑎𝑛𝑑 𝑦 = 𝑦′

skip;

y := y+1;

x := y*2;

print(x)

Program S Program T

candidate 
certificate

certificate 
generation

scheme

Dead Store
Elimination
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… And Checking Them

The checker turns the validity constraints into SMT queries. 

x := x+y skip

The induced SMT query is

Public

𝑥 = 𝑥′ 𝑎𝑛𝑑 𝑦 = 𝑦′

𝑦 = 𝑦′

𝑥 = 𝑥′ 𝑎𝑛𝑑 𝑦 = 𝑦′ // top W
𝑎𝑛𝑑 𝑛𝑒𝑥𝑡 𝑥′ = 𝑥′ 𝑎𝑛𝑑 𝑛𝑒𝑥𝑡 𝑦′ = 𝑦′ // skip
𝑎𝑛𝑑 𝑛𝑒𝑥𝑡 𝑥 = 𝑥 + 𝑦 𝑎𝑛𝑑 𝑛𝑒𝑥𝑡 𝑦 = 𝑦 // x := x+y
⇒ 𝑛𝑒𝑥𝑡 𝑦 = 𝑛𝑒𝑥𝑡(𝑦′) // bottom W

opt
𝑆 𝑇

validator

W

Current LLVM validator is 
~2000 lines of OCaml code, 
links to the Z3 SMT solver
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Certificate Generation for LLVM

Public
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Open: Concurrency-aware Optimization

Standard optimizations may be incorrect for concurrent execution.

Public

Dead Store 
Elimination

x := 1; y := 1;

signal A; await A;

await B; print x;

print y; signal B;

skip; skip;

signal A; await A;

await B; print x;

print y; signal B;

Prints x=1, y=1 Prints x=0, y=0

How to certify concurrency-aware transformations? 
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Open: Secure Compilation

Correct optimizations can introduce security holes.

Public

x := read_password();

use(x);

x := 0; // clear memory

// password is secure 

Dead 
Store 
Elimination

x := read_password();

use(x);

x := 0; // dead store

// password leaks via x    

How to certify secure compilation? 
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To Sum Up

• Much software is too large and far too complex to be verified ex post facto. 

It is necessary to build verifiability into software.

• The design of self-certifying software is an art …. but one that is informed by 
deductive proof principles.

Design your software to be self-certifying! 
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Spinoff: Defensive Optimizing Compilation

Can an optimizing compiler make good use of externally generated invariants? 

Theorem: If 𝑅 is a refinement from 𝑇 to 𝑆 and 𝜑 is invariant in 𝑆, then 𝑝𝑜𝑠𝑡(𝑅−1, 𝜑) is invariant in 𝑇.

Public

opt

proof gen

propagate

witness 
𝑊1

opt

proof gen

propagate

witness 
𝑊0

opt

proof gen

propagate

witness 
𝑊2

𝜑0 𝜑1 𝜑2 𝜑3

𝑃0 𝑃1 𝑃2 𝑃3
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Compiler Validation Methods

1. Automated Test Generation (E.g., Csmith [2011] and EMI [2014])

• Must generate test programs AND test inputs for those programs

• All the advantages and the disadvantages of testing

2. Proving correctness once and for all (E.g., CompCert [Leroy 2006])

• I.e., establish the theorem: ∀𝑃 ∀𝑖 𝑃 𝑖 = 𝑐𝑜𝑚𝑝𝑖𝑙𝑒 𝑃 𝑖

• Requires considerable effort and expertise; best when designing compiler with its proof

3. Translation Validation: Proving correctness per program (E.g., TVOC [2005])

• I.e., Given 𝑃, establish the theorem ∀𝑖 𝑃 𝑖 = 𝑐𝑜𝑚𝑝𝑖𝑙𝑒 𝑃 𝑖

• A different heuristic per optimization; validator correctness becomes an issue

Public


