
© 2019 Nokia1

Kedar Namjoshi
Bell Labs, Nokia

NYPLSE 2019
25 Feb 2019

Designing
Self-Certifying Compilers

© 2019 Nokia2

Compilers are Everywhere!

• Language Implementation

C/C++ to a.out

Java/Python to bytecode

VHDL/Verilog to netlist

Statecharts to C++

Target behavior should be a subset of source behavior.

• Refactoring Programs

Source and target behavior should be identical.

• Layering Program Aspects

Target should match source behavior on all but the new aspect.

Public

© 2019 Nokia3

What is the Problem?

Compilers are too large and far too complex for ex post facto verification.

© 2019 Nokia4

This is not a new problem!

(The Humble Programmer, Edsger W. Dijkstra, 1972)

© 2019 Nokia5

This talk: A Less-Than-Ideal Solution

Design software to be self-certifying.

With the property: If 𝒗𝒂𝒍𝒊𝒅(𝑰𝒏,𝑾,𝑶𝒖𝒕) then Box is operating correctly.

Box
𝐼𝑛 𝑂𝑢𝑡

validator

Proof 𝑾 Proof/Witness/Certificate

© 2019 Nokia6

Does self-certification work for compiling?

Common optimizations have simple certificates

• Dead Store Elimination

• Constant Propagation and Folding

• Loop Unrolling (replicate loop body)

• Loop Peeling (expand first K iterations)

• Loop Invariant Code Motion

• Static Single Assignment (SSA) conversion

• CFG simplification

• Instruction Combination

The trusted code base shrinks from a few million to
a few thousand lines of code.

Public

opt

certificate gen

certificate
check

𝑆 𝑇

Certificate
W

Credible Compilation [Rinard-Marinov, 1999]

Witnessing [Namjoshi-Zuck, 2013]

© 2019 Nokia7

What is a Certificate?

x := x+y;

y := y+1;

x := y*2;

print(x,y)

There is a simple pattern to the certificate:

-- relate states with the same program location, and

-- include term 𝑣 = 𝑣′ if and only if variable 𝑣 is live at that location in the source program

Public

𝑦 = 𝑦′

𝑥 = 𝑥′ 𝑎𝑛𝑑 𝑦 = 𝑦′

𝑦 = 𝑦′

𝑥 = 𝑥′ 𝑎𝑛𝑑 𝑦 = 𝑦′

𝑥 = 𝑥′ 𝑎𝑛𝑑 𝑦 = 𝑦′

skip;

y := y+1;

x := y*2;

print(x,y)

Program S Program T

Dead Store
Elimination

© 2019 Nokia8

What is a Certificate?

x := 3;

y := x+1;

x := y*z;

print(x)

This certificate also follows a simple pattern:

-- relate states that have the same location, and

-- include term 𝑣 = 𝑣′ for all variables 𝑣,
and term 𝑣 = c if 𝑣 has a known constant value c at that location in the source

Public

𝑥, 𝑦, 𝑧 = 𝑥′, 𝑦′, 𝑧′ 𝑎𝑛𝑑 𝑥 = 3 𝑎𝑛𝑑 𝑦 = 4

𝑥, 𝑦, 𝑧 = 𝑥′, 𝑦′, 𝑧′

𝑥, 𝑦, 𝑧 = 𝑥′, 𝑦′, 𝑧′ 𝑎𝑛𝑑 𝑥 = 3

𝑥, 𝑦, 𝑧 = 𝑥′, 𝑦′, 𝑧′ 𝑎𝑛𝑑 𝑦 = 4

𝑥, 𝑦, 𝑧 = 𝑥′, 𝑦′, 𝑧′ 𝑎𝑛𝑑 𝑦 = 4

x := 3;

y := 4;

x := 4*z;

print(x)

Program S Program T

Constant
Propagation

© 2019 Nokia9

Validating Certificates

Public

Soundness: Every computation of T has a W-related computation in S with identical i/o behavior.

Completeness: Every correct transformation has a valid certificate.

The certificate may include history (summarize past actions), allow stuttering (ignore inessential actions), and
provide prophecy (guess future nondeterminism)

𝑠

𝑠′

𝑡

𝑡′

W

W

Program S Program T

© 2019 Nokia10

Generating Certificates

x := x+y;

y := y+1;

x := y*2;

print(x)

There is a simple pattern to the certificate:

-- link states with the same program location, and

-- include term 𝑣 = 𝑣′ if and only if variable 𝑣 is live at that location in the source program

Public

𝑦 = 𝑦′

𝑥 = 𝑥′ 𝑎𝑛𝑑 𝑦 = 𝑦′

𝑦 = 𝑦′

𝑥 = 𝑥′ 𝑎𝑛𝑑 𝑦 = 𝑦′

𝑥 = 𝑥′ 𝑎𝑛𝑑 𝑦 = 𝑦′

skip;

y := y+1;

x := y*2;

print(x)

Program S Program T

candidate
certificate

certificate
generation

scheme

Dead Store
Elimination

© 2019 Nokia11

… And Checking Them

The checker turns the validity constraints into SMT queries.

x := x+y skip

The induced SMT query is

Public

𝑥 = 𝑥′ 𝑎𝑛𝑑 𝑦 = 𝑦′

𝑦 = 𝑦′

𝑥 = 𝑥′ 𝑎𝑛𝑑 𝑦 = 𝑦′ // top W
𝑎𝑛𝑑 𝑛𝑒𝑥𝑡 𝑥′ = 𝑥′ 𝑎𝑛𝑑 𝑛𝑒𝑥𝑡 𝑦′ = 𝑦′ // skip
𝑎𝑛𝑑 𝑛𝑒𝑥𝑡 𝑥 = 𝑥 + 𝑦 𝑎𝑛𝑑 𝑛𝑒𝑥𝑡 𝑦 = 𝑦 // x := x+y
⇒ 𝑛𝑒𝑥𝑡 𝑦 = 𝑛𝑒𝑥𝑡(𝑦′) // bottom W

opt
𝑆 𝑇

validator

W

Current LLVM validator is
~2000 lines of OCaml code,
links to the Z3 SMT solver

© 2019 Nokia12

Certificate Generation for LLVM

Public

© 2019 Nokia13

Open: Concurrency-aware Optimization

Standard optimizations may be incorrect for concurrent execution.

Public

Dead Store
Elimination

x := 1; y := 1;

signal A; await A;

await B; print x;

print y; signal B;

skip; skip;

signal A; await A;

await B; print x;

print y; signal B;

Prints x=1, y=1 Prints x=0, y=0

How to certify concurrency-aware transformations?

© 2019 Nokia14

Open: Secure Compilation

Correct optimizations can introduce security holes.

Public

x := read_password();

use(x);

x := 0; // clear memory

// password is secure

Dead
Store
Elimination

x := read_password();

use(x);

x := 0; // dead store

// password leaks via x

How to certify secure compilation?

© 2019 Nokia15

To Sum Up

• Much software is too large and far too complex to be verified ex post facto.

It is necessary to build verifiability into software.

• The design of self-certifying software is an art …. but one that is informed by
deductive proof principles.

Design your software to be self-certifying!

© 2019 Nokia16

With Many Thanks To

• Lenore Zuck and V. N. Venkatakrishnan (UIC)

• Summer interns at Bell Labs

Tim King (NYU) Oswaldo Olivo (UT Austin) Chaoqiang Deng (NYU)

Nimit Singhania (U. Penn) Zvonimir Pavlinovic (NYU) Yiji Zhang (UIC)

• DARPA and the NSF, for supporting this research

• You, for listening to this talk! ☺

© 2019 Nokia17

Formal Acknowledgements

This work was supported, in part, by DARPA under agreement number FA8750-12-C-0166.
The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of DARPA or
the U.S. Government.

This material is based upon work supported, in part, by the National Science Foundation
under Grants No. (NSF CCF-0341658, NSF CCF-1563393). Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation.

Public

© 2019 Nokia19

Spinoff: Defensive Optimizing Compilation

Can an optimizing compiler make good use of externally generated invariants?

Theorem: If 𝑅 is a refinement from 𝑇 to 𝑆 and 𝜑 is invariant in 𝑆, then 𝑝𝑜𝑠𝑡(𝑅−1, 𝜑) is invariant in 𝑇.

Public

opt

proof gen

propagate

witness
𝑊1

opt

proof gen

propagate

witness
𝑊0

opt

proof gen

propagate

witness
𝑊2

𝜑0 𝜑1 𝜑2 𝜑3

𝑃0 𝑃1 𝑃2 𝑃3

© 2019 Nokia20

Compiler Validation Methods

1. Automated Test Generation (E.g., Csmith [2011] and EMI [2014])

• Must generate test programs AND test inputs for those programs

• All the advantages and the disadvantages of testing

2. Proving correctness once and for all (E.g., CompCert [Leroy 2006])

• I.e., establish the theorem: ∀𝑃 ∀𝑖 𝑃 𝑖 = 𝑐𝑜𝑚𝑝𝑖𝑙𝑒 𝑃 𝑖

• Requires considerable effort and expertise; best when designing compiler with its proof

3. Translation Validation: Proving correctness per program (E.g., TVOC [2005])

• I.e., Given 𝑃, establish the theorem ∀𝑖 𝑃 𝑖 = 𝑐𝑜𝑚𝑝𝑖𝑙𝑒 𝑃 𝑖

• A different heuristic per optimization; validator correctness becomes an issue

Public

