
Direct Reflection for Free!
Joomy Korkut

Princeton University

 
February 25th, 2019

NYPLSE '19

 1

@cattheory

Basic terminology

 2

When we write an interpreter or a compiler, we are dealing with two languages:

• Metalanguage: the language in which the interpreter/compiler is implemented.

• Object language: the input language of the generated interpreter/compiler.

 3

Metaprogramming

Homogeneous Heterogeneous
(same language) (different languages)

e.g. C preprocessor

Generative Intensional
(putting together) (taking apart

data types and functions)

Strings QuasiquotationADTs
(JavaScript's

eval)
(Lisp, Haskell, Idris)(Template

Haskell)

categorization from Martin Berger's 2016 slides

Problem statement

 4

• Implementing metaprogramming systems, when writing a compiler/interpreter, is difficult. 
Especially with languages in development, any change in the language will require a lot of work
to keep the metaprogramming parts up to date.

• Until recently, we did not have a convincing way to automatically add homogeneous generative
metaprogramming to an existing language definition, now we do thanks to 
"Modelling Homogeneous Generative Meta-Programming" by Berger, Tratt and Urban (ECOOP'17) 
 
However, their one-size-fits-all method requires the addition of a new constructor to the AST to
represent ASTs. And the addition of "tags" as well.

• We still do not have a convincing way to automatically add homogeneous generative
metaprogramming to an existing language implementation.

My solution

 5

• To find an appropriate representation of ASTs of an object language inside that language. 
We can pick a different representation for each language.

• To use Haskell and take advantage of the generic programming techniques to
automatically add metaprogramming to an existing language implementation.

• In other words, I want to use the intensional metaprogramming of the meta language to
automatically create a generative metaprogramming system for the object language.

Peirce's triangle of signs

 6

(the physical sign itself, representamen)
Symbol

(the referred object, referent)
Object

(the thought/sense made out of it, interpretant)
Sense

decodes intoencodes into

is d
eno

ted
 by

ind
ica

tes

materializes into

is represented by🛑 STOP stop rule

"I should stop here."

Peirce's triangle of signs, with a twist

 7

Symbol Object

Sense

A value Metalanguage term
that represents it

Object language term
that represents it

(in a language implementation)

inspired from James Noble and Kumiko Tanaka-Ishii

The language implementation triangle

 8

the mathematical value
 red

A value Meta language term
that represents it

Object language term
that represents it

(in meta language)
Red

(if our object language
has algebraic data types)

Red
(if our object language
is untyped λ-calculus)

λr.λg.λb.r
(if our object language

is typed λ-calculus
with sums and products)

inl ()

The language implementation triangle

 9

the string hello
A value Meta language term

that represents it

Object language term
that represents it

(in meta language)
"hello"

(if our object language
has strings)

"hello" any other representation
our object language supports

Peirce's triangle of signs, with another twist

 10

Symbol Object

Sense

Term in the
object language

AST representing that
term in the meta language

Reflection of that term
in the object language

(in a language implementation)

The metaprogramming implementation triangle

 11

(in object language)
"hello"

Term in the
object language

AST representing that term in
the meta language

Reflection of that term
in the object language

(in meta language)
StrLit "hello"

(in object language)
StrLit "hello"

 12

AST representing the reflected term
in the meta language

Reflection of the reflection of the term
in the object language

(in object language)
App (Var "StrLit") (StrLit "hello")

(in meta language)
App (Var "StrLit") (StrLit "hello")

level 2 ...

AST representing that term
in the meta language

Reflection of that term
in the object language

(in meta language)
StrLit "hello"

(in object language)
StrLit "hello"level 1

the string hello
A value

Meta language term
that represents it

Term in the
object language

(in meta language)
"hello"

(in object language)
"hello"level 0

reification

reflection

antiquotation
quotation

class Bridge a where
 reflect => a ?> Exp
 reify => Exp ?> Maybe a

 13

instance Bridge String where
 reflect s = StrLit s
 reify (StrLit s) = Just s
 reify _ = Nothing

instance Bridge Int where
 reflect n = IntLit n
 reify (IntLit n) = Just n
 reify _ = Nothing

 14

class Bridge a where
 reflect => a ?> Exp
 reify => Exp ?> Maybe a

Haskell's generic programming techniques

 15

class Typeable a where
 typeOf => a ?> TypeRep

class Typeable a M> Data a where
 ...
 toConstr => a ?> Constr
 dataTypeOf => a ?> DataType

(can collect arguments of a value)

(monadic helper to construct new value from constructor)

gmapQ => (forall d. Data d M> d ?> u) ?> a ?> [u]

fromConstrM => forall m a. (Monad m, Data a) M> (forall d. Data d M> m d) ?> Constr ?> m a

There are a few alternatives such as GHC.Generics, but I chose Data and Typeable for their expressive power.

Both Data and Typeable are automatically derivable! (for simple Haskell ADTs)

Cookbook

 16

1. Pick your object language.

2. Define an AST data type for your object language, in the metalanguage.

3. Pick your reflection representation. 
(There are many options!)

4. Define the Data a M> Bridge a instance for the AST data type.

"

Let's try with the λ-calculus!

Scott encoding for untyped λ-calculus

 17

the natural number 0

A value Meta language term
that represents it

Object language term
that represents it

(in meta language)
Z

λf.λx. x

Scott encoding for untyped λ-calculus

 18

the natural number 1

A value Meta language term
that represents it

Object language term
that represents it

(in meta language)
S Z

λf.λx.f (λf.λx.x)

Generalizing Scott encoding

 19

(in meta language)
Ctor e_1 ... e_n

where Ctor is the ith constructor
out of m constructors

λ c_1. λ c_2. ... λ c_m. c_i e_1 ... e_n⌈ ⌉ ⌈ ⌉

=

⌈ ⌉

Key idea: if Ctor constructs a value of a type that has a Data
instance, then we can get the Scott encoding automatically

 | getTypeRep @a YZ getTypeRep @Int = reflect @Int (unsafeCoerce v)
 | getTypeRep @a YZ getTypeRep @String = reflect @String (unsafeCoerce v)
 | otherwise =

instance Data a M> Bridge a where
 reflect v

 lams args (apps (Var c : gmapQ reflectArg v))
 where
 (args, c) = constrToScott @a (toConstr v)
 reflectArg => forall d. Data d M> d ?> Exp
 reflectArg x = reflect @d x

 reify e
 ...

 20

(hack)

Implementation of Scott encoding from Data

1. get all the constructors
2. pick which one you use
3. recurse on the arguments
4. construct the nested lambdas  

and applications

1
2

3

4

instance Data a M> Bridge a where
 reflect v
 ...

 reify e

 case collectAbs e of -- dissect the nested lambdas
 ([], _) ?> Nothing
 (args, body) ?>
 case spineView body of -- dissect the nested application
 (Var c, rest) ?> do
 ctors <_ getConstrs @a
 ctor <_ lookup c (zip args ctors)
 evalStateT (fromConstrM reifyArg ctor) rest
 _ ?> Nothing
 where
 reifyArg => forall d. Data d M> StateT [Exp] Maybe d
 reifyArg = do e <_ gets head
 modify tail
 lift (reify @d e)

 | getTypeRep @a YZ getTypeRep @Int = unsafeCoerce (reify @Int e)
 | getTypeRep @a YZ getTypeRep @String = unsafeCoerce <$> (reify @String e)
 | otherwise =

 21

(hack)

Implementation of Scott encoding from Data

1. get the nested lambda bindings
2. get the head of the  

nested application
3. recurse on the arguments
4. construct the Haskell term

1

2

3

4

Tying the knot

 22

Now we have a way to take (pretty much) any Haskell value to its representation in Exp.

This can be either a natural number, a color, or ... Exp itself.

data Exp =
 Var String
 | App Exp Exp
 | Abs String Exp
 | StrLit String
 | IntLit Int
 | MkUnit

x
e1 e2
λ x. e
"hello"
3
()

deriving (Show, Eq, Data, Typeable)

Tying the knot

 23

λ> reflect Red
Abs "c0" (Abs "c1" (Abs "c2" (Var "c0")))

λ> reflect (S Z)
Abs "c0" (Abs "c1" (App (Var "c0") (Abs "c0" (Abs "c1" (Var "c1")))))

λ> reflect MkUnit
Abs "c0" (Abs "c1" (Abs "c2" (Abs "c3" (Abs "c4" (Abs "c5" (Var "c5"))))))

λ> reflect (reflect Z)
Abs "c0" (Abs "c1" (Abs "c2" (Abs "c3" (Abs "c4" (Abs "c5" (App (App (Var
"c2") (StrLit "c0")) (Abs "c0" (Abs "c1" (Abs "c2" (Abs "c3" (Abs
"c4" (Abs "c5" (App (App (Var "c2") (StrLit "c1")) (Abs "c0" (Abs
"c1" (Abs "c2" (Abs "c3" (Abs "c4" (Abs "c5" (App (Var "c0") (StrLit
"c1")))))))))))))))))))))

Tying the knot

 24

data Exp =
 Var String
 | App Exp Exp
 | Abs String Exp
 | StrLit String
 | IntLit Int
 | MkUnit
 | Quasiquote Exp
 | Antiquote Exp

x
e1 e2
λ x. e
"hello"
3
()
`(e)
~(e)

deriving (Show, Eq, Data, Typeable)

Tying the knot

 25

eval' => M.Map String Exp ?> Exp ?> Exp
...
eval' env (Quasiquote e) = reflect e
eval' env (Antiquote e) = let Just x = reify (eval e) in x

(no error handling here)

"In programming languages, there is a simple yet elegant strategy for implementing
reflection: instead of making a system that describes itself, the system is made
available to itself. We name this direct reflection, where the representation of
language features via its semantics is actually part of the semantics itself."

Eli Barzilay, dissertation, 2006

Tying the knot

 26

λ> eval <$> parseExp "~((λ x.x) `(()))"
Right MkUnit quoting unitidentity function

antiquoting the function application

What we can do using this

 27

• Parser reflection: a way to pass a string containing code in the object language, to the
object language, and getting the reflected term.

• Type checker / elaborator reflection: a way to expose the type checker in the object
language and make it available for the reflected terms, usable in metaprograms.

• Reuse of efficient host language code

Future work

 28

• More experiments with typed object languages, especially dependent types

• Boehm-Berarducci encoding

• Object languages with algebraic data types

• Typed metaprogramming à la Typed Template Haskell or Idris

• Another metalanguage: Coq, JavaScript?

