
1/20

Exploiting Abstract Interpretation for Model

Checking Programs

Gilbert Pajela, Jordi Navarrette, and Subash Shankar
City University of New York (CUNY)

February 25, 2019

2/20

Objective I

Objective: to improve the performance of software model
checking using static analysis techniques

Static analysis and model checking: two formal verification
techniques that can be used to verify that a program adheres
to its specification

Our new method of combining static analysis with model
checking:

Has the potential to improve the performance of tools that use
formal verification techniques

Is automatable, and we are currently working on its automation

3/20

Objective II

Basic outline of steps in our method:

Perform a static analysis of a C program

Insert the results of the analysis into the program

Run a model checking tool with the modified program as input

Test results: significant improvement in speed of the model
checker using our method on some programs

4/20

Our Approach

1 Performing an abstract interpretation to identify variable
values at varied program points

2 Using backward slicing to choose which program variables to
track

3 Exploiting this information to reduce the search space of the
model checker

5/20

Approaches to Program Verification

Abstract Interpretation: An approximation of program
semantics based on mappings between concrete and abstract
lattices ⇒ symbolic evaluation in abstract domain

/ Usefulness of [nondeterministic, lossy] abstract program
dependent on abstractions

/ Loops may require unrolling, with loss of precision (or an
indeterminate fixed point computation)

Model Checking with CEGAR: Iteration over abstraction -
model checking - refinement cycle to automatically prove
program correctness

/ State space explosion
/ Success limited by choice of predicate abstractions

6/20

Existing Tools

Frama-C [2]:

An extensible C verification framework
Plugins include abstract interpretation (Eva) and slicing

CPAchecker [1]:

Configurable program analysis dealing mainly with model
checking of control-flow automata constructed from C
programs
Includes support for CEGARish checking (in
predicateAnalysis configuration)

CegarMC [3]:

A previously published Frama-C plugin by the authors
Integrates CEGAR-based model checkers into Frama-C

7/20

Static Analysis Tools I

Two Frama-C plugins used by our method:

1 Eva to automatically compute sets of possible values for the
variables of an analyzed program

2 The program slicing plugin:

Reduces a program based on a backward slicing criterion,

traditionally a program location and a set of program

variables, so that the behavior of the original program is

preserved with respect to the criterion

The results from Eva are also used to compute program slices

8/20

Static Analysis Tools II

Sets of possible values introduced into the program using
assume statements

Assume statements inserted at selected points throughout the
program

CPAchecker run with the modified program as input

9/20

Example

int x, x0, y, y0;

y = 0;

while (x > 0) {

x0 = x;

y0 = y;

x = x - 1;

y = y + 2;

if (2 * (x0 - x) != y - y0)

error();

}

10/20

Example With Assume Statements Inserted I

int x, x0, y, y0;

y = 0;

assume(x >= INT_MIN && x <= INT_MAX &&

x0 >= INT_MIN && x0 <= INT_MAX &&

y == 0 && y0 == 0);

while (x > 0) {

assume(x >= 1 && x <= INT_MAX &&

x0 >= INT_MIN && x0 <= INT_MAX &&

y >= 0 && y <= INT_MAX - 1 &&

y % 2 == 0 &&

y0 >= 0 && y0 <= INT_MAX - 1 &&

y0 % 2 == 0);

x0 = x;

y0 = y;

11/20

Example With Assume Statements Inserted II

x = x - 1;

y = y + 2;

if (2 * (x0 - x) != y - y0)

error();

assume(x >= 0 && x <= INT_MAX - 1 &&

x0 >= 1 && x0 <= INT_MAX &&

y >= 2 && y <= INT_MAX - 1 &&

y % 2 == 0 &&

y0 >= 0 && y0 <= INT_MAX - 1 &&

y0 % 2 == 0);

12/20

Example With Assume Statements Inserted III

}

assume(x >= INT_MIN && x <= 0 &&

x0 >= INT_MIN && x0 <= INT_MAX &&

y >= 0 && y <= INT_MAX - 1 &&

y % 2 == 0 &&

y0 >= 0 && y0 <= INT_MAX - 1 &&

y0 % 2 == 0);

13/20

TOOL DEMO

14/20

Frama-C Architecture I

depends of

registers in

AST Manipulations

Abstract Interpretation Lattices

Utilities

Memory States

Extended Cil API

Lexing, Parsing, Typing, Linking

Extended Cil Kernel

Extended Cil AST

Project

Plug−in 1 Plug−in nPlug−in 2

Plug−in
types m

Plug−in
types 1

Plug−in
types 2

......

Db

Frama−C Plugins

Frama−C Kernel

Extended Cil

Dynamic

From Frama-C Plugin Manual

Plugins:

Interfaces to abstract syntax tree
(AST), C intermediate language (CIL),
AI lattices, etc. provided by kernel

Plugins used for either analysis (≥ 1
AST) or source-to-source
transformation (> 1 AST)

Kernel-integrated plugins include Eva
and wp (statically linked)

15/20

Frama-C Architecture II

depends of

registers in

AST Manipulations

Abstract Interpretation Lattices

Utilities

Memory States

Extended Cil API

Lexing, Parsing, Typing, Linking

Extended Cil Kernel

Extended Cil AST

Project

Plug−in 1 Plug−in nPlug−in 2

Plug−in
types m

Plug−in
types 1

Plug−in
types 2

......

Db

Frama−C Plugins

Frama−C Kernel

Extended Cil

Dynamic

From Frama-C Plugin Manual

Plugins:

Extensible through user-written
plugins, typically linked dynamically

Common plugin interface allows for
inter-plugin information sharing, along
with a central mechanism for
combining results

All programmed in OCAML

16/20

Tool Architecture

depends of

registers in

AST Manipulations

Abstract Interpretation Lattices

Utilities

Memory States

Extended Cil API

Lexing, Parsing, Typing, Linking

Extended Cil Kernel

Extended Cil AST

Project

Plug−in 1 Plug−in nPlug−in 2

Plug−in
types m

Plug−in
types 1

Plug−in
types 2

......

Db

Frama−C Plugins

Frama−C Kernel

Extended Cil

Dynamic

From Frama-C Plugin Manual

CegarMC Plugin

CPA

checker

SATABS

Cegarmc

17/20

Ongoing Research I

Fine-tune the abstract interpretation

E.g., the program points where the abstract interpretation
information is exploited

Evaluate our method with more and a wider variety of
example programs

Fully automate our method, extending our CegarMC plugin

18/20

Ongoing Research II

Explore other possible combinations of abstract interpretation
and model checking:

Residual program: unexplored parts of a model check

Create a residual program generator using Frama-C plugins

Pass the residual program generated by CPAchecker along with
any other necessary information to a Frama-C plugin

19/20

References

[1] D. Beyer and M. E. Keremoglu.
CPAchecker: A tool for configurable software verification.
In Computer Aided Verification (CAV), pages 184–190, 2011.

[2] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and
B. Yakobowski.
Frama-C, a software analysis perspective.
In Formal Aspects of Computing, 27: pages 573–609, March
2015.

[3] S. Shankar and G. Pajela.
A Tool Integrating Model Checking into a C Verification
Toolset.
In International Symposium on Model Checking Software,
pages 214–224, 2016.

20/20

Thank you!

Questions?

Frama-C: downloadable from www.frama-c.com

CPAchecker: downloadable from cpachecker.sosy-lab.org

CegarMC Plugin: downloadable from
http://www.compsci.hunter.cuny.edu/~sshankar/cegarmc.html

www.frama-c.com
cpachecker.sosy-lab.org
http://www.compsci.hunter.cuny.edu/~sshankar/cegarmc.html

